Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Sci Rep ; 14(1): 4283, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383610

RESUMO

The Russian dandelion (Taraxacum koksaghyz) grows in temperate zones and produces large amounts of poly(cis-1,4-isoprene) in its roots, making it an attractive alternative source of natural rubber. Most T. koksaghyz plants require vernalization to trigger flower development, whereas early flowering varieties that have lost their vernalization dependence are more suitable for breeding and domestication. To provide insight into the regulation of flowering time in T. koksaghyz, we induced epigenetic variation by in vitro cultivation and applied epigenomic and transcriptomic analysis to the resulting early flowering plants and late flowering controls, allowing us to identify differences in methylation patterns and gene expression that correlated with flowering. This led to the identification of candidate genes homologous to vernalization and photoperiodism response genes in other plants, as well as epigenetic modifications that may contribute to the control of flower development. Some of the candidate genes were homologous to known floral regulators, including those that directly or indirectly regulate the major flowering control gene FT. Our atlas of genes can be used as a starting point to investigate mechanisms that control flowering time in T. koksaghyz in greater detail and to develop new breeding varieties that are more suited to domestication.


Assuntos
Magnoliopsida , Taraxacum , Borracha/metabolismo , Taraxacum/genética , Taraxacum/metabolismo , Magnoliopsida/metabolismo , Epigenômica , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Epigênese Genética , Federação Russa , Flores/fisiologia
2.
Genes (Basel) ; 15(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38397210

RESUMO

Utilizing salt-tolerant plants is a cost-effective strategy for agricultural production on salinized land. However, little is known about the mechanism of dandelion (Taraxacum mongolicum Hand.-Mazz.) in response to saline stress and caffeic acid biosynthesis. We investigated the morphological and physiological variations of two dandelions, namely, "BINPU2" (dandelion A) and "TANGHAI" (dandelion B) under gradient NaCl concentrations (0, 0.3%, 0.5%, 0.7%, and 0.9%), and analyzed potential mechanisms through a comparison analysis of transcriptomes in the two dandelions. Dandelion A had a high leaf weight; high ρ-coumaric acid, caffeic acid, ferulic acid, and caffeoyl shikimic acid contents; and high activities of POD and Pro. The maximum content of four kinds of phenolic acids mostly occurred in the 0.7% NaCl treatment. In this saline treatment, 2468 and 3238 differentially expressed genes (DEGs) in dandelion A and B were found, of which 1456 and 1369 DEGs in the two dandelions, respectively, showed up-regulation, indicating that more up-regulated DEGs in dandelion A may cause its high salt tolerance. Further, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that dandelion salt response and caffeic acid metabolism were mainly enriched in the phenylpropanoid biosynthesis pathway (ko00940) and response to ethylene (GO: 0009723). The caffeic acid biosynthesis pathway was reconstructed based on DEGs which were annotated to PAL, C4H, 4CL, HCT, C3'H, and CSE. Most of these genes showed a down-regulated mode, except for parts of DEGs of 4CL (TbA05G077650 and TbA07G073600), HCT (TbA03G009110, TbA03G009080, and novel.16880), and COMT (novel.13839). In addition, more up-regulated transcription factors (TFs) of ethylene TFs in dandelion A were found, but the TFs of ERF104, CEJ1, and ERF3 in the two dandelions under saline stress showed an opposite expression pattern. These up-regulated genes could enhance dandelion salt tolerance, and down-regulated DEGs in the caffeic acid biosynthesis pathway, especially CSE (TbA08G014310) and COMT (TbA04G07330), could be important candidate genes in the synthesis of caffeic acid under saline stress. The above findings revealed the potential mechanisms of salt response and caffeic acid metabolism in dandelion under saline stress, and provide references for salt-tolerant plant breeding and cultivation on saline-alkali land in the future.


Assuntos
Taraxacum , Taraxacum/genética , Cloreto de Sódio/farmacologia , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Perfilação da Expressão Gênica , Etilenos
3.
PLoS One ; 19(1): e0295694, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38252676

RESUMO

Taraxacum kok-saghyz (TKS) is a potential source of natural rubber (NR) that can be grown in temperate regions with limited water availability. However, the effect of drought stress on NR production and properties in TKS isn't well studied. This study examined how different levels of drought stress (30, 60 and 90%) influenced the NR content, molecular weight (Mw), glass transition temperature (Tg), gene expression, and biochemical parameters in TKS roots. The results showed that drought stress didn't significantly change the NR content, but increased the Mw and the expression of CPT and SRPP genes, which are involved in NR biosynthesis. The NR from TKS roots (TNR) had a high Mw of 994,000 g/mol and a low Tg of below -60°C under normal irrigation, indicating its suitability for industrial applications. Drought stress also triggered the accumulation of proline, H2O2, MDA, and antioxidant enzymes (CAT, APX, GPX) in TKS roots significantly, indicating a drought tolerance mechanism. These findings suggest that TKS can produce high-quality NR under drought stress conditions and provide a sustainable alternative to conventional NR sources.


Assuntos
Secas , Taraxacum , Peróxido de Hidrogênio , Borracha , Taraxacum/genética , Antioxidantes
4.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446175

RESUMO

MADS-box transcription regulators play important roles in plant growth and development. However, very few MADS-box genes have been isolated in the genus Taraxacum, which consists of more than 3000 species. To explore their functions in the promising natural rubber (NR)-producing plant Taraxacum kok-saghyz (TKS), MADS-box genes were identified in the genome of TKS and the related species Taraxacum mongolicum (TM; non-NR-producing) via genome-wide screening. In total, 66 TkMADSs and 59 TmMADSs were identified in the TKS and TM genomes, respectively. From diploid TKS to triploid TM, the total number of MADS-box genes did not increase, but expansion occurred in specific subfamilies. Between the two genomes, a total of 11 duplications, which promoted the expansion of MADS-box genes, were identified in the two species. TkMADS and TmMADS were highly conserved, and showed good collinearity. Furthermore, most TkMADS genes exhibiting tissue-specific expression patterns, especially genes associated with the ABCDE model, were preferentially expressed in the flowers, suggesting their conserved and dominant functions in flower development in TKS. Moreover, by comparing the transcriptomes of different TKS lines, we identified 25 TkMADSs related to biomass formation and 4 TkMADSs related to NR content, which represented new targets for improving the NR yield of TKS.


Assuntos
Borracha , Taraxacum , Borracha/metabolismo , Taraxacum/genética , Taraxacum/metabolismo , Genoma , Transcriptoma , Evolução Biológica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo
5.
Gene ; 867: 147346, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36898514

RESUMO

Taraxacum kok-saghyz has been identified as one of the most promising alternative rubber crops, with laticifer cells that produce high-quality rubber. To uncover the underlying molecular mechanisms regulating natural rubber biosynthesis under MeJA induction, a reference transcriptome was constructed from nine samples of T. kok-saghyz. MeJA treatment was applied for 0 h (control), 6 h, and 24 h. A total of 7452 differentially expressed genes (DEGs) were identified in response to MeJA stress, relative to the control. Functional enrichment showed that these DEGs were primarily related to hormone signaling, defensive responses, and secondary metabolism. Combined analysis of the DEGs induced by MeJA and high-expression genes in laticifer cells further identified seven DEGs related to natural rubber biosynthesis that were upregulated in latex tissue, suggesting that these candidate genes could prove valuable in studying the mechanism of MeJA-mediated natural rubber biosynthesis. In addition, 415 MeJA-responsive DEGs were from several transcription factor families associated with drought resistance. This study helps to elucidate the mechanism of natural rubber biosynthesis in T. kok-saghyz in response to MeJA stress and identifies key candidate MeJA-induced DEGs in laticifer tissue, as well as a candidate drought-response target gene, whose knowledge will promote the breeding of T. kok-saghyz in the aspect of rubber yields and quality, and drought tolerance.


Assuntos
Borracha , Taraxacum , Borracha/metabolismo , Taraxacum/genética , Taraxacum/metabolismo , Resistência à Seca , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Regulação da Expressão Gênica de Plantas
6.
Plant Cell Rep ; 42(4): 775-789, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36774424

RESUMO

KEY MESSAGE: We reported the mitochondrial genome of Taraxacum mongolicum for the first time. Five pairs of repeats that can mediate recombination were validated, leading to multiple conformations of genome. Taraxacum mongolicum belongs to the Asteraceae family and has important pharmaceutical value. To explore the possible interaction between the organelle genomes, we assembled the complete mitochondrial genome (mitogenome) of T. mongolicum using Illumina and Oxford Nanopore sequencing data. This genome corresponded to a circular molecule 304,467 bp long. It encodes 52 unique genes including 31 protein-coding, 3 ribosomal RNA (rRNA) and 18 transfer RNA (tRNA) genes. In addition to the single circular conformation, the existence of alternative conformations mediated by five repetitive sequences in the mitogenome was identified and validated. Recombination mediated by the inverted repeats resulted in two conformations. Conversely, recombination mediated by the two direct repeats broke one large circular molecule into two subgenomic circular molecules. Furthermore, we identified 12 homologous fragments by comparing the sequences of mitogenome and plastome, including eight complete tRNA genes. Lastly, we identified a total of 278 RNA-editing sites in protein-coding sequences based on RNA-seq data. Among them, cox1 and nad5 gene has the most sites (21), followed by the nad2 gene with 19 sites. We successfully validated 213 predicted RNA-editing sites using PCR amplification and Sanger sequencing. This project reported the first mitogenome of T. mongolicum and demonstrated its multiple conformations generated by repeat-mediated recombination. This genome could provide critical information for the molecular breeding of T. mongolicum, and also be used as a reference genome for other species of the genus Taraxacum.


Assuntos
Genoma Mitocondrial , Taraxacum , Genoma Mitocondrial/genética , Taraxacum/genética , Análise de Sequência de DNA , RNA Ribossômico/genética , Recombinação Genética , RNA de Transferência/genética , Filogenia
7.
J Evol Biol ; 36(4): 663-674, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36810811

RESUMO

DNA methylation in plant genomes occurs in different sequences and genomic contexts that have very different properties. DNA methylation that occurs in CG (mCG) sequence context shows transgenerational stability and high epimutation rate, and can thus provide genealogical information at short time scales. However, due to meta-stability and because mCG variants may arise due to other factors than epimutation, such as environmental stress exposure, it is not clear how well mCG captures genealogical information at micro-evolutionary time scales. Here, we analysed DNA methylation variation between accessions from a geographically widespread, apomictic common dandelion (Taraxacum officinale) lineage when grown experimentally under different light conditions. Using a reduced-representation bisulphite sequencing approach, we show that the light treatment induced differentially methylated cytosines (DMCs) in all sequence contexts, with a bias towards transposable elements. Accession differences were associated mainly with DMCs in CG context. Hierarchical clustering of samples based on total mCG profiles revealed a perfect clustering of samples by accession identity, irrespective of light conditions. Using microsatellite information as a benchmark of genetic divergence within the clonal lineage, we show that genetic divergence between accessions correlates strongly with overall mCG profiles. However, our results suggest that environmental effects that do occur in CG context may produce a heritable signal that partly dilutes the genealogical signal. Our study shows that methylation information in plants can be used to reconstruct micro-evolutionary genealogy, providing a useful tool in systems that lack genetic variation such as clonal and vegetatively propagated plants.


Assuntos
Metilação de DNA , Taraxacum , Taraxacum/genética , Análise de Sequência de DNA , Genômica , Evolução Biológica
8.
New Phytol ; 239(4): 1475-1489, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36597727

RESUMO

Laticifers are hypothesized to mediate both plant-herbivore and plant-microbe interactions. However, there is little evidence for this dual function. We investigated whether the major constituent of natural rubber, cis-1,4-polyisoprene, a phylogenetically widespread and economically important latex polymer, alters plant resistance and the root microbiome of the Russian dandelion (Taraxacum koksaghyz) under attack of a root herbivore, the larva of the May cockchafer (Melolontha melolontha). Rubber-depleted transgenic plants lost more shoot and root biomass upon herbivory than normal rubber content near-isogenic lines. Melolontha melolontha preferred to feed on artificial diet supplemented with rubber-depleted rather than normal rubber content latex. Likewise, adding purified cis-1,4-polyisoprene in ecologically relevant concentrations to diet deterred larval feeding and reduced larval weight gain. Metagenomics and metabarcoding revealed that abolishing biosynthesis of natural rubber alters the structure but not the diversity of the rhizosphere and root microbiota (ecto- and endophytes) and that these changes depended on M. melolontha damage. However, the assumption that rubber reduces microbial colonization or pathogen load is contradicted by four lines of evidence. Taken together, our data demonstrate that natural rubber biosynthesis reduces herbivory and alters the plant microbiota, which highlights the role of plant-specialized metabolites and secretory structures in shaping multitrophic interactions.


Assuntos
Besouros , Taraxacum , Animais , Borracha/química , Borracha/metabolismo , Látex/metabolismo , Herbivoria , Larva , Plantas Geneticamente Modificadas/metabolismo , Taraxacum/genética
9.
BMC Genomics ; 24(1): 13, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627555

RESUMO

BACKGROUND: Taraxacum kok-saghyz Rodin (TKS) is a promising commercial alternative natural rubber (NR) yielding plant. Cultivating TKS with a high NR content is an important breeding target, and developing molecular markers related to NR content can effectively accelerate the breeding process of TKS. RESULTS: To construct a high-density SNP genetic map and uncover genomic regions related to the NR content in TKS, an F1 mapping population of TKS was constructed by crossing two parents (l66 and X51) with significant differences in NR contents. The NR content of the F1 plants ranged from 0.30 to 15.14% and was distributed normally with a coefficient of variation of 47.61%, indicating quantitative trait inheritance. Then, employing whole-genome resequencing (WGR), a TKS genetic linkage map of 12,680 bin markers comprising 322,439 SNPs was generated. Based on the genetic map and NR content of the F1 population, six quantitative trait loci (QTLs) for NR content with LOD > 4.0 were identified on LG01/Chr01 and LG06/Chr06. Of them, the 2.17 Mb genomic region between qHRC-C6-1 and qHRC-C6-2 on ChrA06, with 65.62% PVE in total, was the major QTL region. In addition, the six QTLs have significant additive genetic effects on NR content and could be used to develop markers for marker-assisted selection (MAS) in TKS with a high NR content. CONCLUSION: This work constructed the first high-density TKS genetic map and identified the QTLs and genomic regions controlling the NR content, which provides useful information for fine mapping, map-based cloning, and MAS in TKS.


Assuntos
Locos de Características Quantitativas , Taraxacum , Borracha , Taraxacum/genética , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Fenótipo , Ligação Genética
10.
Plant Physiol Biochem ; 194: 440-448, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36493591

RESUMO

Taraxacum kok-saghyz Rodin (Tk) is a promising alternative rubber-producing grass. However, low biomass and rubber-producing capability limit its commercial application. As a carbon source transporter in plants, sugar will eventually be exported transporters (SWEETs) have been reported to play pivotal roles in diverse physiological events in the context of carbon assimilate transport and utilization. Theoretically, SWEETs would participate in Tk growth, development and response to environmental cues with relation to the accumulation of rubber and biomass, both of which rely on the input of carbon assimilates. Here, we identified 22 TkSWEETs through homology searching of the Tk genomes and bioinformatics analyses. RNA-seq and qRT-PCR analysis revealed these TkSWEETs to have overlapping yet distinct tissue expression patterns. Two TkSWEET isofroms, TkSWEET1 and TkSWEET12 expressed substantially in the latex, the cytoplasm of rubber-producing laticifers as well as the rubber source. As revealed by the transient expression analysis using Tk mesophyll protoplasts, both TkSWEET1 and TkSWEET12 were located in the plasma membrane. Heterologous expressions of the two TkSWEETs in a yeast mutant revealed that only TkSWEET1 exhibited apparent sugar transport activities, with a preference for monosaccharides. Interestingly, TkSWEET12, the latex-predominant TkSWEET isoform, seemed to have evolved from a tandem duplication event that results in a cluster of six TkSWEET genes with the TkSWEET12 therein, suggesting its specialized roles in the laticifers.


Assuntos
Látex , Taraxacum , Borracha/metabolismo , Taraxacum/genética , Taraxacum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Membrana Transportadoras/genética , Saccharomyces cerevisiae/metabolismo , Isoformas de Proteínas/metabolismo , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Plant Sci ; 326: 111506, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36283577

RESUMO

Dandelion is a well-known traditional medical herb, also used as functional food. Dandelion possesses many medical properties, such as anti-bacterial and antioxidant activity and contains a variety of triterpenes, such as α-amyrin, ß-amyrin, taraxerol and taraxasterol. In this study, we found that triterpenes biosynthesis was promoted by methyl jasmonate (MeJA), while the transcriptional mechanism underlying triterpenes biosynthesis was rarely investigated. Here, a MeJA-induced bHLH transcription factor TaMYC2 was identified. The content of taraxasterol and taraxerol in dandelion was obviously enhanced in overexpression TaMYC2 transgenic lines and expression level of the squalene synthase gene (TaSS) was elevated to about 3-5 folds compared with the control lines. Dual-LUC, Y1H and EMSA experiments revealed that TaMYC2 bound to the E-box motif in the promoter of TaSS and activated its transcription. Taken together, this study suggested that TaMYC2 acted as a positive regulator for bioengineering approaches to produce high content triterpenes-producing dandelions.


Assuntos
Taraxacum , Triterpenos , Taraxacum/genética , Taraxacum/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Triterpenos/metabolismo
12.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142183

RESUMO

WRKY transcription factors present unusual research value because of their critical roles in plant physiological processes and stress responses. Taraxacum kok-saghyz Rodin (TKS) is a perennial herb of dandelion in the Asteraceae family. However, the research on TKS WRKY TFs is limited. In this study, 72 TKS WRKY TFs were identified and named. Further comparison of the core motifs and the structure of the WRKY motif was analyzed. These TFs were divided into three groups through phylogenetic analysis. Genes in the same group of TkWRKY usually exhibit a similar exon-intron structure and motif composition. In addition, virtually all the TKS WRKY genes contained several cis-elements related to stress response. Expression profiling of the TkWRKY genes was assessed using transcriptome data sets and Real-Time RT-PCR data in tissues during physiological development, under abiotic stress and hormonal treatments. For instance, the TkWRKY18, TkWRKY23, and TkWRKY38 genes were significantly upregulated during cold stress, whereas the TkWRKY21 gene was upregulated under heat-stress conditions. These results could provide a basis for further studies on the function of the TKS WRKY gene family and genetic amelioration of TKS germplasm.


Assuntos
Taraxacum , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Taraxacum/genética , Taraxacum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Plant Physiol Biochem ; 189: 71-82, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36055055

RESUMO

Salt stress has a major effect on growth and secondary metabolism in medicinal plants, however, the effect of salt stress on Taraxacum officinale F. H. Wigg. is still scarce. In this study, we evaluated the effects of salt stress on the physiology, morphology, phenolic acid accumulation, and expression of genes involved in phenolic acid biosynthesis in T. officinale. We found that plants grew well at 1 g kg-1 NaCl, and the state of photosystem Ⅱ (PSⅡ) and the organization of the chloroplasts at 0.5 g kg-1 NaCl showed no significant differences compared with the control. However, 2 g kg-1 and 4 g kg-1 NaCl inhibited growth and accelerated leaf senescence. At 4 g kg-1 NaCl, the fresh and dry weights decreased to 28% and 42% of the control, while chlorosis and necrosis were observed on the leaves. Furthermore, up-regulation of the expression of ToC3'H corresponded with an increase in the levels of caffeoylquinic acids (chlorogenic acid and isochlorogenic acid A) at NaCl concentration ≤ 1 g kg-1. Expressions of four phenolic acid biosynthesis genes, ToC4H, To4CL, ToHCT, and ToHQT, were down-regulated with increasing NaCl concentrations, consistent with the observed decreases in caftaric and cichoric acids. In summary, cultivation of T. officinale under mild salt stress (NaCl ≤ 1 g kg-1) is feasible and facilitates the accumulation of caffeoylquinic acids; thus this species may be recommended for saline soils.


Assuntos
Taraxacum , Ácido Clorogênico , Hidroxibenzoatos , Complexo de Proteína do Fotossistema II , Folhas de Planta , Ácido Quínico/análogos & derivados , Estresse Salino , Metabolismo Secundário , Cloreto de Sódio/farmacologia , Solo , Estresse Fisiológico , Taraxacum/genética
14.
Molecules ; 27(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684485

RESUMO

The roots of Taraxacum kok-saghyz Rodin (TKS) are well-known and valued for their rubber-producing ability. Therefore, research on the analysis and detection of metabolites from the roots of TKS have been reported in previous studies. However, all of these studies have the shortcoming of focusing on only the rubber of TKS, without profiling the other metabolites in a systematic and comprehensive way. Here, the primary and secondary metabolites from the leaves of TKS were investigated using UPLC-ESI-MS/MS, and a total of 229 metabolites were characterized. Carboxylic acid derivatives, fatty acyls, phenols, and organooxygen compounds were found to be the major metabolites of TKS. The transcriptome data indicated that ribosomal, glycolysis/gluconeogenesis, phenylpropanoid biosynthesis, and linoleic acid metabolism genes were significantly differentially expressed. This study is the first to report the differences in the metabolic and transcriptome profiles of TKS leaves under exogenous ethephon spray, which improves our understanding of the main metabolites and their molecular mechanisms in TKS leaves.


Assuntos
Taraxacum , Compostos Organofosforados , Borracha , Espectrometria de Massas em Tandem , Taraxacum/genética , Transcriptoma
15.
PeerJ ; 10: e13429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35582615

RESUMO

C-repeat binding factors (CBFs) are transcription factors that are known to play important roles in plant cold acclimation. They are highly conserved in most higher plants. Taraxacum kok-saghyz (TKS) is an herb native to China and Kazakhstan and is well-known for its production of rubber silk with industrial and economic value. To understand cold acclimation mechanisms, we conducted a genome-wide discovery of the CBF family genes in TKS and revealed ten CBF genes. A bioinformatic analysis of the CBF genes was carried out to analyze the phylogenetic relationship, protein conservative motifs, protein physicochemical properties, gene structure, promoter cis-acting elements, and the gene expression patterns under cold acclimation and control conditions. It was found that most of these genes were highly responsive at the late stage of cold acclimation, indicating that they play important roles in the cold acclimation processes of TKS. This study provides a theoretical basis for the study of the molecular functions of the CBF gene family in TKS, and a useful guidance for the genetic improvement of the cold tolerance traits of TKS and other plants, including crops.


Assuntos
Taraxacum , Taraxacum/genética , Filogenia , Fatores de Transcrição/genética , Borracha/metabolismo , Aclimatação/genética
16.
Nat Genet ; 54(1): 84-93, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34992267

RESUMO

Apomixis, the clonal formation of seeds, is a rare yet widely distributed trait in flowering plants. We have isolated the PARTHENOGENESIS (PAR) gene from apomictic dandelion that triggers embryo development in unfertilized egg cells. PAR encodes a K2-2 zinc finger, EAR-domain protein. Unlike the recessive sexual alleles, the dominant PAR allele is expressed in egg cells and has a miniature inverted-repeat transposable element (MITE) transposon insertion in the promoter. The MITE-containing promoter can invoke a homologous gene from sexual lettuce to complement dandelion LOSS OF PARTHENOGENESIS mutants. A similar MITE is also present in the promoter of the PAR gene in apomictic forms of hawkweed, suggesting a case of parallel evolution. Heterologous expression of dandelion PAR in lettuce egg cells induced haploid embryo-like structures in the absence of fertilization. Sexual PAR alleles are expressed in pollen, suggesting that the gene product releases a block on embryogenesis after fertilization in sexual species while in apomictic species PAR expression triggers embryogenesis in the absence of fertilization.


Assuntos
Apomixia/genética , Divisão Celular/genética , Genes de Plantas , Taraxacum/genética , Alelos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Óvulo/citologia , Transcriptoma , Dedos de Zinco/genética
17.
Sci China Life Sci ; 65(3): 515-528, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34939160

RESUMO

Plants belonging to the genus Taraxacum are widespread all over the world, which contain rubber-producing and non-rubber-producing species. However, the genomic basis underlying natural rubber (NR) biosynthesis still needs more investigation. Here, we presented high-quality genome assemblies of rubber-producing T. kok-saghyz TK1151 and non-rubber-producing T. mongolicum TM5. Comparative analyses uncovered a large number of genetic variations, including inversions, translocations, presence/absence variations, as well as considerable protein divergences between the two species. Two gene duplication events were found in these two Taraxacum species, including one common ancestral whole-genome triplication and one subsequent round of gene amplification. In genomes of both TK1151 and TM5, we identified the genes encoding for each step in the NR biosynthesis pathway and found that the SRPP and CPT gene families have experienced a more obvious expansion in TK1151 compared to TM5. This study will have large-ranging implications for the mechanism of NR biosynthesis and genetic improvement of NR-producing crops.


Assuntos
Genoma de Planta , Borracha/metabolismo , Taraxacum/genética , Vias Biossintéticas , Elementos de DNA Transponíveis , Taraxacum/metabolismo
18.
J Evol Biol ; 34(7): 1071-1086, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33955626

RESUMO

Many sexual-asexual complexes show a distinct pattern where the asexuals have larger and more northerly ranges than closely related sexuals. A prime candidate to explain this so-called "geographical parthenogenesis" is ecological niche divergence between the sexuals and asexuals. Modern niche modelling techniques allow testing niche divergence by directly comparing the niches of sexuals and asexuals. In this study, I use such techniques to perform range-wide tests of whether nine bioclimatic variables, including annual mean temperature and annual precipitation, contribute to geographical parthenogenesis in two dandelion taxa: Taraxacum section Ruderalia and Taraxacum section Erythrosperma, which are both comprised of sexual diploids and asexual triploids. For both sections, I found evidence of niche divergence, though the exact nature of this divergence was different for the two sections. In section Ruderalia, the sexuals preferred warmer and wetter conditions, whereas in section Erythrosperma, the sexuals preferred dryer conditions. Using Species Distribution Modelling, consistent differences between the sexuals and asexuals were found when looking at the niche determinants: the variables that are most important for modelling the distribution. Furthermore, and in contrast with theoretical expectations that predict that the sexuals should have a wider niche, in section Erythrosperma the asexuals were found to have a wider niche than the sexuals. In conclusion, differences in niche optima, niche determinants, and niche width all contribute to the pattern of geographical parthenogenesis of these two dandelion taxa. However, the results also indicate that the exact causation of geographical parthenogenesis is not uniform across taxa.


Assuntos
Taraxacum , Diploide , Ecossistema , Geografia , Partenogênese , Taraxacum/genética
19.
Phytochemistry ; 181: 112576, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33166748

RESUMO

The genetic relationship between Taraxacum species, also known as the dandelion, is complicated because of asexual and mixed sexual apomictic reproduction. The usage of Taraxacum species in traditional medicines make their specialized metabolism important, but interspecific chemical difference has rarely been reported for the genus. In this study, we assembled the chloroplast genome and 45S rDNA of six Taraxacum species that occur in Korea (T. campylodes, T. coreanum, T. erythrospermum, T. mongolicum, T. platycarpum, and T. ussuriense), and performed a comparative analysis, which revealed their phylogenetic relationships and possible natural hybridity. We also performed a liquid chromatography-mass spectrometry-based phytochemical analysis to reveal interspecific chemical diversity. The comparative metabolomics analysis revealed that Taraxacum species could be separated into three chemotypes according to their major defensive specialized metabolites, which were the sesquiterpene lactones, the phenolic inositols, and chlorogenic acid derivatives. The CP DNA- and 45S rDNA-based phylogenetic trees showed a tangled relationship, which supports the notion of ongoing hybridization of wild Taraxacum species. The untargeted LC-MS analysis revealed that each Taraxacum plant exhibits species-specific defensive specialized metabolism. Moreover, 45S rDNA-based phylogenetic tree correlated with the hierarchical cluster relied on metabolite compositions. Given the coincidence between these analyses, we represented that 45S rDNA could well reflect overall nuclear genome variation in Taraxacum species.


Assuntos
Taraxacum , Filogenia , República da Coreia , Especificidade da Espécie , Taraxacum/genética
20.
Genes (Basel) ; 11(9)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825294

RESUMO

Apomixis in the common dandelion (Taraxacum officinale) consists of three developmental components: diplospory (apomeiosis), parthenogenesis, and autonomous endosperm development. The genetic basis of diplospory, which is inherited as a single dominant factor, has been previously elucidated. To uncover the genetic basis of the remaining components, a cross between a diploid sexual seed parent and a triploid apomictic pollen donor was made. The resulting 95 triploid progeny plants were genotyped with co-dominant simple-sequence repeat (SSR) markers and phenotyped for apomixis as a whole and for the individual apomixis components using Nomarski Differential Interference Contrast (DIC) microscopy of cleared ovules and seed flow cytometry. From this, a new SSR marker allele was discovered that was closely linked to parthenogenesis and unlinked to diplospory. The segregation of apomixis as a whole does not differ significantly from a three-locus model, with diplospory and parthenogenesis segregating as unlinked dominant loci. Autonomous endosperm is regularly present without parthenogenesis, suggesting that the parthenogenesis locus does not also control endosperm formation. However, the high recovery of autonomous endosperm is inconsistent with this phenotype segregating as the third dominant locus. These results highlight the genetic complexity underlying apomixis in the dandelion and underline the challenge of introducing autonomous apomixis into sexual crops.


Assuntos
Apomixia/genética , Endosperma/fisiologia , Partenogênese , Poliploidia , Sementes/genética , Taraxacum/genética , Mapeamento Cromossômico , Repetições de Microssatélites , Fenótipo , Sementes/crescimento & desenvolvimento , Taraxacum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...